Paradigm(s) | procedural, imperative, structured |
---|---|
Appeared in | 1960 |
Designed by | Bauer, Bottenbruch, Rutishauser, Samelson, Backus, Katz, Perlis, Wegstein, Naur, Vauquois, van Wijngaarden, Woodger, Green, McCarthy |
Influenced by | ALGOL 58 |
Influenced |
Most subsequent imperative languages (so-called ALGOL-like languages) Agena, C |
ALGOL 60 (short for ALGOrithmic Language 1960) is a member of the ALGOL family of computer programming languages. It gave rise to many other programming languages, including BCPL, B, Pascal, Simula, C, and many others. ALGOL 58 introduced code blocks and the begin
and end
pairs for delimiting them. ALGOL 60 was the first language implementing nested function definitions with lexical scope.
Niklaus Wirth based his own ALGOL W on ALGOL 60 before moving to develop Pascal. Algol-W was intended to be the next generation ALGOL but the ALGOL 68 committee decided on a design that was more complex and advanced rather than a cleaned simplified ALGOL 60. The official ALGOL versions are named after the year they were first published.
ALGOL 68 is substantially different from Algol 60 but was not well received so that in general "Algol" means dialects of Algol 60. The name ALGOL of the family is sometimes given in mixed case (Algol 60), and sometimes in all uppercase (ALGOL 68).
Contents |
ALGOL 60 - with COBOL - were the first languages to seek standardization.
ALGOL 60 was used mostly by research computer scientists in the United States and in Europe. Its use in commercial applications was hindered by the absence of standard input/output facilities in its description and the lack of interest in the language by large computer vendors. ALGOL 60 did however become the standard for the publication of algorithms and had a profound effect on future language development.
John Backus developed the Backus normal form method of describing programming languages specifically for ALGOL 58. It was revised and expanded by Peter Naur for ALGOL 60, and at Donald Knuth's suggestion renamed Backus–Naur Form.[1]
Peter Naur: "As editor of the ALGOL Bulletin I was drawn into the international discussions of the language and was selected to be member of the European language design group in November 1959. In this capacity I was the editor of the ALGOL 60 report, produced as the result of the ALGOL 60 meeting in Paris in January 1960."[2]
The following people attended the meeting in Paris (from January 11 to 16):
Alan Perlis gave a vivid description of the meeting: "The meetings were exhausting, interminable, and exhilarating. One became aggravated when one's good ideas were discarded along with the bad ones of others. Nevertheless, diligence persisted during the entire period. The chemistry of the 13 was excellent."
Both John Backus and Peter Naur served on the committee which created ALGOL 60 as did Wally Feurzeig, who later created Logo.
ALGOL 60 inspired many languages that followed it. C. A. R. Hoare remarked: "Here is a language so far ahead of its time that it was not only an improvement on its predecessors but also on nearly all its successors."[3] The Scheme programming language, a variant of Lisp that adopted the block structure and lexical scope of ALGOL, also adopted the wording "Revised Report on the Algorithmic Language Scheme" for its standards documents in homage to ALGOL.[4]
To date there have been at least 70 augmentations, extensions, derivations and sublanguages of Algol 60.[5]
Name | Year | Author | State | Description | Target CPU |
---|---|---|---|---|---|
X1 ALGOL 60 | August 1960[6] | Edsger W. Dijkstra and Jaap A. Zonneveld | Netherlands | First implementation of ALGOL 60[7] | Electrologica X1 |
Elliott ALGOL | 1960s | C. A. R. Hoare | UK | Subject of the famous Turing lecture | Elliott 803 & the Elliott 503 |
Burroughs Algol (Several variants) |
1961 | Burroughs Corporation (with participation by Hoare, Dijkstra, and others) | USA | Basis of the Burroughs (and now Unisys MCP based) computers | Burroughs large systems and their midrange as well. |
Case ALGOL | 1961 | USA | Simula was originally contracted as a simulation extension of the Case ALGOL | UNIVAC 1107 | |
GOGOL | 1961 | Bill McKeeman | USA | For ODIN time-sharing system | PDP-1 |
RegneCentralen ALGOL | 1961 | Peter Naur, Jørn Jensen | Denmark | Implementation of full Algol 60 | DASK at Regnecentralen |
Dartmouth ALGOL 30 | 1962 | Thomas Eugene Kurtz et al. | USA | LGP-30 | |
USS 90 Algol | 1962 | L. Petrone | Italy | ||
Algol Translator | 1962 | G. van der Mey and W.L. van der Poel | Netherlands | Staatsbedrijf der Posterijen, Telegrafie en Telefonie | ZEBRA |
Kidsgrove Algol | 1963 | F. G. Duncan | UK | English Electric Company KDF9 | |
VALGOL | 1963 | Val Schorre | USA | A test of the META II compiler compiler | |
FP6000 Algol | 1963 | Roger Moore | Canada | written for Saskatchewan Power Corp | FP6000 |
Whetstone | 1964 | Brian Randell and L J Russell | UK | Atomic Power Division of English Electric Company. Precursor to Ferranti Pegasus, National Physical Laboratories ACE and English Electric DEUCE implementations. | English Electric Company KDF9 |
NU ALGOL | 1965 | Norway | UNIVAC | ||
ALGEK | 1965 | USSR | Minsk-22 | АЛГЭК, based on ALGOL-60 and COBOL support, for economical tasks | |
MALGOL | 1966 | publ. A. Viil, M Kotli & M. Rakhendi, | Estonian SSR | Minsk-22 | |
ALGAMS | 1967 | GAMS group (ГАМС, группа автоматизации программирования для машин среднего класса), cooperation of Comecon Academies of Science | Comecon | Minsk-22, later ES EVM, BESM | |
ALGOL/ZAM | 1967 | Poland | Polish ZAM computer | ||
Chinese Algol | 1972 | China | Chinese characters, expressed via the Symbol system | ||
DG/L | 1972 | USA | DG Eclipse family of Computers |
The Burroughs dialects included special Bootstrapping dialects such as ESPOL and NEWP.
ALGOL 60 as officially defined had no I/O facilities; implementations defined their own in ways that were rarely compatible with each other. In contrast, ALGOL 68 offered an extensive library of transput (ALGOL 68 parlance for Input/Output) facilities.
ALGOL 60 allowed for two evaluation strategies for parameter passing: the common call-by-value, and call-by-name. Call-by-name had certain limitations in contrast to call-by-reference, making it an undesirable feature in imperative language design. For example, it is impossible in ALGOL 60 to develop a procedure that will swap the values of two parameters if the actual parameters that are passed in are an integer variable and an array that is indexed by that same integer variable.[8] However, call-by-name is still beloved of ALGOL implementors for the interesting "thunks" that are used to implement it. Donald Knuth devised the "man or boy test" to separate compilers that correctly implemented "recursion and non-local references." This test contains an example of call-by-name.
There are 35 such reserved words in the standard Burroughs large systems sub-language:
|
|
|
|
|
There are 71 such restricted identifiers in the standard Burroughs large systems sub-language:
|
|
|
|
|
and also the names of all the intrinsic functions.
Priority | Operator | |
---|---|---|
first arithmetic |
first | ↑ (power) |
second | ×, / (real), ÷ (integer) | |
third | +, - | |
second | <, ≤, =, ≥, >, ≠ | |
third | ¬ (not) | |
fourth | ∧ (or) | |
fifth | ∨ (and) | |
sixth | ⊃ (implication) | |
seventh | ≡ (equivalence) |
procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k); value n, m; array a; integer n, m, i, k; real y; comment The absolute greatest element of the matrix a, of size n by m is transferred to y, and the subscripts of this element to i and k; begin integer p, q; y := 0; i := k := 1; for p:=1 step 1 until n do for q:=1 step 1 until m do if abs(a[p, q]) > y then begin y := abs(a[p, q]); i := p; k := q end end Absmax
Implementations differ in how the text in bold must be written. The word 'INTEGER', including the quotation marks, must be used in some implementations in place of integer, above, thereby designating it as a special keyword.
Following is an example of how to produce a table using Elliott 803 ALGOL:[9]
FLOATING POINT ALGOL TEST' BEGIN REAL A,B,C,D' READ D' FOR A:= 0.0 STEP D UNTIL 6.3 DO BEGIN PRINT PUNCH(3),££L??' B := SIN(A)' C := COS(A)' PRINT PUNCH(3),SAMELINE,ALIGNED(1,6),A,B,C' END' END'
PUNCH(3) sends output to the teleprinter rather than the tape punch.
SAMELINE suppresses the carriage return + line feed normally printed between arguments.
ALIGNED(1,6) controls the format of the output with 1 digit before and 6 after the decimal point
Since ALGOL 60 had no I/O facilities, there is no portable hello world program in ALGOL. The following program could (and still will) compile and run on an ALGOL implementation for a Unisys A-Series mainframe, and is a straightforward simplification of code taken from The Language Guide at the University of Michigan-Dearborn Computer and Information Science Department Hello world! ALGOL Example Program page.
BEGIN FILE F(KIND=REMOTE); EBCDIC ARRAY E[0:11]; REPLACE E BY "HELLO WORLD!"; WRITE(F, *, E); END.
A simpler program using an inline format:
BEGIN FILE F(KIND=REMOTE); WRITE(F, <"HELLO WORLD!">); END.
An even simpler program using the Display statement:
BEGIN DISPLAY("HELLO WORLD!") END.
An alternative example, using Elliott Algol I/O is as follows. Elliott Algol used different characters for "open-string-quote" and "close-string-quote", represented here by ‘ and ’.
program HiFolks; begin print ‘Hello world’ end;
Here's a version for the Elliott 803 Algol (A104) The standard Elliott 803 used 5 hole paper tape and thus only had upper case. The code lacked any quote characters so £ (UK Pound Sign) was used for open quote and ? (Question Mark) for close quote. Special sequences were placed in double quotes (e.g. ££L?? produced a new line on the teleprinter).
HIFOLKS' BEGIN PRINT £HELLO WORLD£L??' END'
The ICT 1900 series Algol I/O version allowed input from paper tape or punched card. Paper tape 'full' mode allowed lower case. Output was to a line printer.
'PROGRAM' (HELLO) 'BEGIN' 'COMMENT' OPEN QUOTE IS '(', CLOSE IS ')', PRINTABLE SPACE HAS TO BE WRITTEN AS % BECAUSE SPACES ARE IGNORED; WRITE TEXT('('HELLO%WORLD')'); 'END' 'FINISH'